This infinity; time: Kolmogorov; next partitions; time: permutations & combinations

\[P(\text{being infected in 100 acts}) \]
\[= P(1 \text{ or more infected in 100 acts}) \]

\[B \cap S = T - S \]

\[P \left(\text{not inf. in 100 acts}\right) \]
\[= 1 - P(\text{inf. or inf. or inf. \ldots on 1st or 2nd or 3rd \ldots}) \]

\[= 1 - (1 - \frac{1}{500})^{100} (1 - \frac{1}{500})^{100} \ldots \]
\[= 1 - (1 - \frac{1}{500})^{100} = 0.18 (1 - \frac{1}{500})^{100} \]

\[A, B \text{ mutually exclusive iff } P(A \cap B) = 0 \]

A, B independent iff
\[P(B|A) = P(B) \]
\[P(A|B) = P(A) \]
\[P(A \text{ and } B) = P(A) \cdot P(B) \]
If I have an uncountably infinite set of sets, I can make a new set by taking 1 element from each of those sets.

\[\exists \] is defined to be \{ \theta_1, \ldots, \theta_n \} a partition of \(S' \).
\[A = (A \cap B_1) \cup (A \cap B_2) \cup \ldots \cup (A \cap B_n) \]

\[= (A \cap B_1) \lor (A \cap B_2) \lor \ldots \lor (A \cap B_n) \]

\[P(A) = P \left[(A \cap B_1) \lor (A \cap B_2) \lor \ldots \lor (A \cap B_n) \right] \]

\[= P(A \cap B_1) + P(A \cap B_2) + \ldots + P(A \cap B_n) \]

\[P(A) = \sum_{i=1}^{n} P(A \cap B_i) \]

\[P(A \cap B_i) = P(B_i) \cdot P(A \mid B_i) \]

\[P(A) = \sum_{i=1}^{n} P(B_i) \cdot P(A \mid B_i) \]

\text{Law of Total Probability (LTP)}
$p_k (A) : C \rightarrow [0, 1]$ with \(A \) a subset of \(S \)

$A(x) \leftarrow \text{continuous at } 0$

$A(x) \rightarrow \text{discontinuous at } 0$

$x \rightarrow f(x) = x^2$

$A(x)$ if \(A \) is "close" to \(B \)

New: $p(A) = p(B)$

\[
1 - \frac{365!}{272! \cdot 365} \\
1 - \left(\frac{365}{365} \right) \left(\frac{364}{365} \right) \left(\frac{363}{365} \right) \cdots (\cdot) - (\cdot)
\]